The l0-norm-based Blind Image Deconvolution: Comparison and Inspiration

نویسندگان

  • Hai-Song Deng
  • Wen-Ze Shao
چکیده

Single image blind deblurring has been intensively studied since Fergus et al.’s variational Bayes method in 2006. It is now commonly believed that the blurkernel estimation accuracy is highly dependent on the pursed salient edge information from the blurred image, which stimulates numerous l0-approximating blind deblurring methods via kinds of techniques and tricks. This paper, however, focuses on the four recent daring attempts which are all based on the simple and direct l0-norm. A systematic comparative analysis is made towards those methods, clarifying their similarities and differences, and providing a benchmark evaluation on both the deblurring quality and computational efficiency. Results have demonstrated that the l0-norm alone is far enough to achieve top blind deblurring performance. Instead, details are to be paid with fairly more attention as working on the problem formulation as well as the algorithmic deduction. Inspired by the success of the bi-l0-l2-norm regularization, an attempt has been made to boost a recently proposed normalized sparsity-based blind deblurring method via simply borrowing core ideas behind the bi-l0-l2-norm regularization. Experimental results show that the boosting approach has leaded to a significant improvement in terms of both accuracy and efficiency. Finally, several possible extensions are discussed towards the bi-l0-l2-norm regularization. Keywords-blind deblurring; camera shake removal; variational Bayes; l0-norm minimization; split Bregman; halfquadratic

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions

Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...

متن کامل

Handling Noise and Outliers in Single Image Deblurring using L0 Sparsity

Camera shake during exposure leads to image blur and poses an important problem in digital photography. Blind deconvolution recovers the sharp original image from a blurred image. MAP has been the most widely used deconvolution field but naive MAP methods mostly tends to favour no-blur solution. An intermediate representation of the image called unnatural representation has been found to the ma...

متن کامل

Blind Deconvolution Using a Regularized Structured Total Least Norm Algorithm

Rosen, Park, and Glick proposed the structured total least norm (STLN) algorithm for solving problems in which both the matrix and the right-hand side contain errors. We extend this algorithm for ill-posed problems by adding regularization, and we use the resulting algorithm to solve blind deconvolution problems as encountered in image deblurring when both the image and the blurring function ha...

متن کامل

Image deconvolution using a characterization of sharp images in wavelet domain

Image deconvolution is a challenging ill-posed problem when only partial information of the blur kernel is available. Certain regularization on sharp images has to be imposed to constrain the estimation of true images during the blind deconvolution process. Based on the observation that an image of sharp edges tends to minimize the ratio between the `1 norm and the `2 norm of its wavelet frame ...

متن کامل

Blind Deconvolution via Lower-Bounded Logarithmic Image Priors

In this work we devise two novel algorithms for blind deconvolution based on a family of logarithmic image priors. In contrast to recent approaches, we consider a minimalistic formulation of the blind deconvolution problem where there are only two energy terms: a leastsquares term for the data fidelity and an image prior based on a lowerbounded logarithm of the norm of the image gradients. We s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016